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ABSTRACT 

A new approximation of the p(x) function has been developed giving an easy determina- 
tion of the activation energy of solid-state reactions from a plot of In g(a) vs. the reciprocal 
temperature, with an error lower than 6% when E/RT = 2. 

INTRODUCTION 

The basic equation for the kinetic analysis of chemical reactions under a 
linear heating program can be expressed in the following well-known form 

g(a)=$/rexp(-E/RT)dT= 
r, 

where p is the heating rate; E is the activation energy; A is the Arrhenius 
pre-exponential factor; T is the absolute temperature; R is the gas constant; 
and p(x) represents the following function 

p(x) =/mqdx (2) 
X x 

where x = E/RT. 

The p(x) function cannot be expressed in a closed form, but must be 
evaluated by numerical integration. This is why a number of authors [1,2] 
attempted to achieve empirical approximations of the p(x) function that 
make log p(x) a linear function of the reciprocal of the temperature, so that 
the activation energy can be simply obtained from the slope of the plot of In 
g( (Y) vs. l/T, according to eqn. (1). The most popular of these approxima- 
tions are those of Doyle [3], Coats and Redfern [4], Gyulai and Greenhow 
[5], and MacCallum and Tanner [6]. The literature [1,7-111 has shown that 
these approximations are adequate, provided that E/RT > 15. However, the 
accuracy of these methods becomes poorer as E/RT decreases, the error in 
the activation energy being of the order of 200-300% when E/RT = 2. 
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Therefore, the use of conventional methods of kinetic analysis for non-iso- 
thermal data of the desorption reactions of gases from solid surfaces is very 
restricted, if these reactions usually take place at low temperatures, generally 
indicating small values of E/RT. 

The aim of the present paper is to develop an approximation of the p(x) 
function which calculates the activation energy of solid-state reactions with a 
high accuracy from a plot of In g(a) vs. l/T in an E/RT range far greater 
than that possible for similar methods available in the literature. 

THEORETICAL 

In order to investigate the linear relationship between log p(x) and l/T, 
the fourth-degree rational approximation. of the p(x) function derived by 
Senum and Yang [lo] is used 

p(x) = exp( -x) x3 + 18x2 + 88x + 96 
X x4 + 20x3 + 120x2 + 240x + 120 

(3) 

which involves an error lower than 10e5%. 
A procedure similar to that previously outlined by MacCallum and 

Tanner [6] is followed. According to these authors, log p(x) and l/T are 
related through the following relationship 

-logp(x)=X+a/T (4) 

where a is the slope of the line, and X is the intercept on the -log p(x) axis. 
Values of a and X were determined [6] for a series of values of E ranging 
from 14 to 64 kcal mol-‘. 

However, Gorbachev [12] and Sestak [13] pointed out that the linear 
relationship between log p(x) and l/T has not been properly analysed and 
is limited in the mathematical sense. In fact, Fig. 1 indicates that a plot of 
-log p(x), calculated from eqn. (3), vs. l/T, for a given value of E, in the 
range investigated by MacCallum and Tanner, shows an important deviation 
from linearity, which could lead to a large error in the calculation of the 
activation energy. 

On the other hand, since Coats and Redfern [4] pointed out that the 
function log p(x) - 210g T shows a better linear correlation with l/T than 
- log p(x), it is considered that an expression of the form 

logp(x)-mlog T=X+a/T (5) 

where m is a constant, would be a more comprehensive approximation of log 
p(x) than eqn. (4). 

Equation (5) has been systematically investigated for a series of activation 
energy values ranging from 1 to 100 kcal mol-’ in order to find the value of 
m which best fits a plot of the left-hand side of eqn. (5) vs. l/T. The same 
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TABLE 1 

Values of the constants of eqns. (6) and (7) evaluated by the least-squares method 

Y b c d 
- 14.16 - 218.8 - 1.876 - 5.03 

value (m = 1.81) was obtained by the method of least-squares for the same E 

values. Figure 1 shows that the linear correlation between (log p(x) - 1.8 log 
T) and l/T, proposed here, is far better than that between log p(x) and 
l/T. 

The corresponding values of a and X have also been determined by the 
least-squares method from plots of log p(x) - 1.8 log T vs. l/T for different 
values of E. Thus, it has been verified that, according to ref. 6, the constant a 

and the activation energy show an excellent linear correlation. Thus 

a= Y+bE (6) 

where Y and b are the a axis intercept and slope, respectively. The values of 
Y and b evaluated by the method of least-squares are given in Table 1. 

MacCallum and Tanner [6] found that the values of log X determined 
from eqn. (4) were linear in relation to log E. This relationship is not evident 
for those X values determined from eqn. (5). However, an excellent linearity 
between X and log E has been found, as shown by Fig. 2. Therefore, we can 
write 

X=clogE+d (7) 

Fig. 1. Plots of log p(x)- 1.81og T and - log p(x) vs. l/T for E = 10 kcal mol-‘. 
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the values of the constants c and d, determined as before, are given in Table 
1. 

From eqns. (5), (6) and (7), after substituting the constants collected in 
Table 1, we get 

log p(x) - 1.8 log T= -5.03 - 1.876 log E - 
14.16 + 218.8E 

T 

where E is expressed in kcal mol- ‘. 
From eqns. (1) and (8) we obtain 

9 3 x 1O-6 AE-0.876 
logg(a)-1.8log T=log * 

14.16 + 218.86 

/3R - T 

(8) 

(9) 

TABLE 2 

The percentage error in the activation energy using the new approximation of the p(x) 
function 

T(K) E/RT=2 5 10 20 50 100 

300 5.62 0.63 -0.14 
400 6.10 0.72 - 0.02 
600 5.69 0.64 - 0.06 
800 5.63 0.53 -0.16 

1000 5.28 0.36 - 0.22 
1200 5.07 0.25 - 0.28 
1400 4.94 0.13 - 0.36 

- 0.05 0.03 0.02 

- 0.04 0.02 0.03 
- 0.08 0.02 0.02 
-0.11 0.01 0.01 
- 0.14 - 0.02 0.01 
-0.19 - 0.03 - 0.01 
- 0.22 - 0.05 - 0.01 

I 

3.0 
InE 

4.0 

Fig. 2. Plot of X vs. In E according to eqn. (7). 
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which can be used for calculating the kinetic parameters of solid-state 
reactions. 

The error in the activation energy determined from eqn. (9) can be 
calculated by resolving the equation 

log P(X) = log P,(&J (10) 

where p(x) is the accurate value of the function calculated from eqn. (3). and 
p,(x,) is the approximate value given by eqn. (8). Values of x, = E,/RT 

have been determined as a function of both E/RT and T, because the 
mathematical form of eqn. (8) does not allow p,(x,) to be evaluated as a 
function of x, only. The percentage error, e, has been calculated from the 
expression 

E,/RT- E/RT E-E 
c= 

E/RT 
x lOO=L 

E 
x 100 

The values of e determined as a function of both E/RT and Tare given in 
Table 2. 

The results included in Table 2 suggest that the errors in the activation 
energy calculated from the method outlined here are much lower than those 
reported in the literature [2,5,7,10] for other methods based on a linear 
relationship between log g(cu) and l/T. 
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Fig. 3. Theoretical a - T curve calculated by assuming a first-order kinetic law, a heating rate 
of 16 OC min-’ and the following kinetic parameters: E = 2 kcal mol-‘, A = 5 min- I. 



128 

TABLE 3 

Kinetic parameters and errors calculated from the theoretical data of Fig. 3 by means of 
different methods; actual values of kinetic parameters E = 2 kcal mol-‘, A = 5 rnin-’ 

Method E (kcal mol-‘) r (W A (mm-‘) 

Coats-Redfem 1.80 10 2.23 
MacCallum-Tanner 0.91 54 9.7 
Doyle 2.80 40.7 223 
Gyulai-Greenhow 2.5 25.0 1.01 
New approximation 1.89 5.5 3.42 

In order to check the above statement, eqn. (9) has been used to perform 
the kinetic analysis of the theoretical curve in Fig. 3, which was calculated 
from eqns. (1) and (3) by assuming a first-order kinetic law (i.e., g(a) = 
- ln(1 - a)) and the following kinetic parameters: E = 2 kcal mol-‘; A = 5 
min-1; and heating rate, fl= 16OC mm-‘. 

The data from Fig. 3, according to eqn. (9), are used in Fig. 4, showing the 
excellent linear correlation between log g(a) - 1.8 log T and l/T. The values 
of both the kinetic parameters and the errors involved are given in Table 3, 
where they are compared with the corresponding values of the kinetic 
analysis of the same kinetic data by the methods of various workers. 

The above results confirm that with the present method, the kinetic 
parameters of a chemical reaction can be calculated with a larger accuracy 
than with other similar methods. 
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Fig. 4. Kinetic analysis of data taken from Fig. 3 according to eon. (9). 
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